A pesar de que de momento solo se ha podido demostrar en animales, la posibilidad de poder curar la diabetes tipo 1, la menos frecuente pero con muchas complicaciones, supone un paso enorme para la medicina regenerativa. La solución pasaría por reprogramar células de la piel para conventirlas en células pancreáticas productoras de insulina, un deseo buscado desde hace tiempo pero que ahora parece posible gracias a un equipo de investigadores del Instituto Gladstone, en EE.UU.
La diabetes tipo 1 se produce debido a que las células productoras de insulina –células beta-, localizadas en el páncreas, son incapaces de cumplir con su proceso, o lo hacen de forma ineficiente. Y la insulina es fundamental para que los órganos absorban el azúcar necesaria para que produzcan energía. Ello obliga a los pacientes a depender del tratamiento con insulina de por vida. Hasta ahora muchos investigadores han tratado de obtener células para suplir esta carencia, pero los resultados no han sido buenos.
Sin embargo la consolidación de la medicina regenerativa, de la terapia celular, etc. ha modificado el panorama en el tratamiento de la diabetes tipo 1. La posibilidad de reprogramar células o de obtener nuevas células que sean capaces de producir la insulina necesaria no es ya un mero deseo. En el trabajo que se publica en «Cell Stem Cell» los científicos han logrado producir las cantidades necesarias de células beta productoras de insulina para trasplantarlas a un paciente, algo que hasta ahora había sido imposible. «El poder de la medicina regenerativa es que nos puede proporcionar una fuente ilimitada de células beta productoras de insulina funcionales que pueden ser trasplantadas en el paciente», señala S. Ding, quien debido a que intentos anteriores no había logrado éxito propuso un enfoque «algo diferente».
Uno de los principales desafíos para la generación de grandes cantidades de células beta es que tienen una limitada capacidad regenerativa; es decir, vez que maduran es difícil hacer más. Así que los investigadores decidieron retroceder un poco más en el ciclo celular. Primero obtuvieron células de la piel, llamadas fibroblastos, de ratones de laboratorio. A continuación, mediante el tratamiento de los fibroblastos con un «cóctel» de moléculas y factores de reprogramación, transformaron las células en células similares a las del endodermo, un tipo de célula que se encuentra en una fase embrionaria inicial, y que maduran generando los principales órganos, incluyendo el páncreas.
Al reprogramar las células con otro «cóctel» de moléculas y factores de reprogramación, los investigadores transformaron las células del endodermo en células que imitan las células del páncreas, que llamaron de PPLC. Y, según explica otro de los investigadores, Ke Li «el objetivo inicial era ver si podíamos lograr que dichas células PPLC maduraran y se convirtieran en células que, al igual que las células beta, responden a las señales químicas correctas y, lo más importante, secretan insulina. Y nuestros experimentos iniciales, realizados en el laboratorio, revelaron que sí».
Para Miguel Ángel Barajas, del Laboratorio de Terapia Celular de la Clínica Universitaria de Navarra (CUN), el trabajo es «muy interesante» porque su enfoque es distinto: «en vez de ir a una fase muy embrionaria, retrocede solo un poco en el desarrollo embrionario pero, al mismo tiempo que las células se reprograman, se inicia la diferenciación. Al hacerlo todo a la vez -reprogramar y diferenciarse-, el sistema es más eficiente». Y, además, es la primera vez que ésto se hace en páncreas, aunque se había logrado en células cardíacas.
Animales vivos
El paso siguiente era demostrarlo en animales vivos, así que trasplantaron las células PPLC en ratones modificados para tener hiperglucemia -altos niveles de glucosa-, un indicador clave de la diabetes. A la semana del trasplante ya vieron que los niveles de glucosa de los animales descendieron a niveles normales. «Y cuando quitamos las células trasplantadas vimos un pico inmediato glucosa, que revela una relación directa entre el trasplante de PPLC y la reducción de la hiperglucemia» señala Li.
Pero la confirmación de su trabajo llegó a las 8 semanas: las céulas PPLC de habían fabricado células beta secretoras de insulina completamente funcionales. Este paso, señala Barajas, es lo que hace diferente al estudio. «Muchos trabajos logran resultados parecidos en el laborarorio, pero en esta ocasión lo han demostrado en vivo. Los ratones diabéticos recuperaron sus niveles de glucosa normales». Y además, destaca el investigador español, ha demostrado que no sólo fabrican células beta, sino el «resto del linaje celular de los islotes pancréticos».
Los autores del trabajo consideran que «los resultados no hacen sino resaltar el poder de las moléculas en la reprogramación celular y son una prueba de concepto para un futuro enfoque terapéutico personalizado en pacientes», reconoce Ding. El paso siguiente es trasladar los resultados a la clínica en humanos.
Ese es el único «pero» de la investigación para Barajas, «aunque seguro que ya estarán en ello». También deberán resolver el hecho de que han usado «células casi embrionarias, con lo cual es más fácil trabajar. Su reto es no sólo hacerlo en humanos, sino utilizar fibroblastos adultos».
Medicina regenerativa
La profusión de artículos en las últimas semanas relacionados con avances en el campo de la medicina regenerativa, especialmente el publicado en «Nature» sobre un nuevo método más sencillo para generar células madre pluripotentes capaces de diferenciarse en cualquier tipo de células, tienen entusiasmados a los investigadores en este campo.
Miguel Ángel Barajas, del Laboratorio de Terapia Celular de la Clínica Universitaria de Navarra (CUN), cree que si estos últimos ensayos del Instituto Riken, y otros en esta misma dirección, se reproducen en otros laboratorios, se habrá una dado «paso de gigante en el campo de la medicina regenerativa».
En 2013 ya se han fabricado minicerebros y minirriñones en el laboratorio. También se ha utilizado células iPS reprogramadas para obetener células cardiacas, musculares, neuronales o para regenerar hueso. La medicina regenerativa ya está aquí.